Interfacial Morphology and Effects on Device Performance of Organic Bilayer Heterojunction Solar Cells

نویسندگان

  • Michael Zawodzki
  • Roland Resel
  • Michele Sferrazza
  • Olivia Kettner
  • Bettina Friedel
چکیده

The effects of interface roughness between donor and acceptor in a bilayer heterojunction solar cell were investigated on a polymer-polymer system based on poly(3-hexylthiophene) (P3HT) and poly(dioctylfluorene-alt-benzothiadiazole) (F8BT). Both polymers are known to reorganize into semicrystalline structures when heated above their glass-transition temperature. Here, the bilayers were thermally annealed below glass transition of the bulk polymers (≈140 °C) at temperatures of 90, 100, and 110 °C for time periods from 2 min up to 250 min. No change of crystallinity could be observed at those temperatures. However, X-ray reflectivity and device characteristics reveal a coherent trend upon heat treatment. In X-ray reflectivity investigations, an increasing interface roughness between the two polymers is observed as a function of temperature and annealing time, up to a value of 1 nm. Simultaneously, according bilayer devices show an up to 80% increase of power conversion efficiency (PCE) for short annealing periods at any of the mentioned temperatures. Together, this is in agreement with the expectations for enlargement of the interfacial area. However, for longer annealing times, a decrease of PCE is observed, despite the ongoing increase of interface roughness. The onset of decreasing PCE shifts to shorter durations the higher the annealing temperature. Both, X-ray reflectivity and device characteristics display a significant change at temperatures below the glass transition temperatures of P3HT and F8BT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Add-on for High Throughput Screening in Material Discovery for Organic Electronics: “Tagging” Molecules to Address the Device Considerations

This work reflects the worth of intelligent modeling in controlling the nanostructure morphology in manufacturing organic bulk heterojunction (BHJ) solar cells. It suggests the idea of screening the pool of material design possibilities inspired by machine learning. To fulfill this goal, a set of experimental data on a BHJ solar cell with a donor structure of diketopyrrolopyrrole (DDP) and ...

متن کامل

Computational characterization of bulk heterojunction nanomorphology

Related Articles High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer Appl. Phys. Lett. 101, 113301 (2012) High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer APL: Org. Electron. Photonics 5, 207 (2012) Theory and simulation of organic ...

متن کامل

Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar sem...

متن کامل

Novel attributes of steep-slope staggered type heterojunction p-channel electron-hole bilayer tunnel field effect transistor

In this paper, the electrical characteristics and sensitivity analysis of staggered type p-channel heterojunction electron-hole bilayer tunnel field effect transistor (HJ-EHBTFET) are thoroughly investigated via simulation study. The minimum lattice mismatch between InAs/GaAs0.1Sb0.9 layers besides low carrier effective mass of materials provides high probability ...

متن کامل

Random Vs Regularized OPV: Limits of Performance Gain of Organic Bulk Heterojunction Solar Cells by Morphology Engineering

Inexpensive solution processing of bulk heterojunction (BHJ) type organic photovoltaic (OPV) cells offers an attractive option for the low cost solar energy conversion. Solution processing creates a disordered morphology consisting of two organic semiconductors, intermixed randomly within the light-absorbing layer of the cell. In this paper, we use a detailed three-dimensional process-device co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015